Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.150
Filtrar
1.
Clin Chem ; 70(4): 683-684, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565211
2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 607-617, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621864

RESUMO

This study aims to optimize the composite excipients suitable for the preparation of concentrated water pills of personalized traditional Chinese medicine prescriptions by the extruding-rounding method and investigate the roles of each excipient in the preparation process. The fiber materials and powder materials were taken as the standard materials suitable as excipients in the preparation of personalized concentrated water pills without excipient. Water absorption properties and torque rheology were used as indicators for selecting the materials of composite excipients. The ratio of composite excipients was optimized by D-optimal mixture design. Moreover, to demonstrate the universal applicability of the optimal composite excipients, this study selected three traditional Chinese medicine prescriptions with low, medium, and high extraction rates to verify the optimal ratio. Finally, the effects of each selected excipient on the molding of personalized concentrated water pills were investigated with the four parameters of the pill molding quality as indicators. The optimized composite excipients were dextrin∶microcrystalline cellulose(MCC)∶low-substituted hydroxypropyl cellulose(L-HPC) at a ratio of 1∶2∶4. The composite excipients were used for the preparation of personalized concentrated water pills with stable process, good quality, and a wide range of application. Dextrin acted as a diluent and accelerated the speed of extruding. MCC mainly served as an adhesive, increasing the cohesion and viscosity of the pills. L-HPC as a water absorbent and disintegrating agent can absorb and hold the water of the concentrate and has a strong disintegration effect.


Assuntos
Medicamentos de Ervas Chinesas , Excipientes , Excipientes/química , Medicina Tradicional Chinesa , Água/química , Medicamentos de Ervas Chinesas/química
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 618-624, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621865

RESUMO

In the process of preparing presonalized concentrated watered pills, the decoction needs to be concentrated by heat and mixed with medicinal slices or powder to prepare a wet mass. However, some of the traditional Chinese medicine(TCM) components are easily decomposed or transformed by heat. In order to optimize the preparation process of presonalized TCM concentrated watered pills and reduce the loss of heat-unstable components in prescriptions, this study uses five compound TCM prescriptions containing heat-unstable components as model prescriptions, namely the Linggui Zhugan Formula, Xiaochengqi Formula, Sanpian Formula, Xiaoer Qixing Formula, and Xiaoyao Formula. Based on the two kinds of preparation process of presonalized concentrated watered pills previously established by our research group, whole extract concentrated watered pills and concentrated watered pills without excipients are prepared, respectively. Characteristic maps are measured and compared with those of the corresponding decoction. The results show that the characteristic maps of the concentrated watered pills without excipients of the five model prescriptions are very close to those of the decoction, and the number of characteristic peaks and peak areas are higher than those of whole extract concentrated watered pills. In addition, the peak area of some peaks is higher than that of the corresponding decoction. Thus, it is recommended to select the preparation process of prescription-based concentrated watered pills without excipients based on the "unification of medicines and excipients" to preserve those heat-unstable components more effectively when the prescription contains a heat-unstable component of TCM. This study provides a basis for the subsequent reasonable development and application of presonalized TCM pills.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Excipientes , Temperatura Alta , Prescrições
4.
AMA J Ethics ; 26(4): E289-294, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564743

RESUMO

This commentary responds to a case about diethylene glycol-contaminated glycerin in cough syrup. Glycerin is a commonly used excipient in medicines to improve texture and taste. Excipients are typically pharmacologically inactive ingredients contained in prescription and over-the-counter drugs that play a critical role in the delivery, effectiveness, and stability of active drug substances. The commentary first canvasses how contaminants enter the excipient supply chains. One way is by misleading labeling or intentional adulteration by manufacturers or suppliers. Another way is by human or systemic error. This commentary then discusses quality control testing and suggests the ethical and clinical importance of increased transparency in excipient supply chains.


Assuntos
Excipientes , Glicerol , Criança , Humanos , Excipientes/efeitos adversos , Preparações Farmacêuticas , Contaminação de Medicamentos , Tosse/tratamento farmacológico
5.
AAPS PharmSciTech ; 25(4): 76, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580881

RESUMO

For liquid drug products, e.g., solutions or suspensions for oral or parenteral dosing, stability needs to be demonstrated in primary packaging during storage and in dosing devices during in-use periods per quality guidelines from the International Conference on Harmonisation (ICH) and the European Agency for the Evaluation of Medicinal Products (EMEA). One aspect of stability testing for liquid drug products is in-use stability, which typically includes transferring the liquid samples into another container for further sample preparation with extraction diluent and necessary agitation. Samples are then analyzed with traditional chromatography methods, which are laborious, prone to human errors, and time-consuming, especially when this process needs to be repeated multiple times during storage and in-use periods. Being able to analyze the liquid samples non-destructively would significantly improve testing efficiency. We investigated different Raman techniques, including transmission Raman (TRS) and back scatter Raman with a non-contact optic (NCO) probe, as alternative non-destructive tools to the UHPLC method for API quantitation in in-use liquid samples pulled into plastic dosing syringes. The linearity of the chemometric methods for these two techniques was demonstrated by cross-validation sample sets at three levels over an API concentration range of 60 to 80 mg/mL. The accuracy of the chemometric models was demonstrated by the accurate prediction of the API concentrations in independent samples from four different pilot plant batches manufactured at different sites. Both techniques were successful in measuring a signal through a plastic oral dosing syringe, and predicting the suspension API concentration to within 4% of the UHPLC-measured value. For future work, there are opportunities to improve the methodology by exploring additional probes or to expand the range of applications by using different sample presentations (such as prefilled syringes) or formulation matrices for solutions and suspensions.


Assuntos
60416 , Seringas , Humanos , Embalagem de Medicamentos , Suspensões , Excipientes
6.
AAPS PharmSciTech ; 25(4): 79, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589718

RESUMO

The development of suitable dosage forms is essential for an effective pharmacological treatment in children. Orally disintegrating tablets (ODTs) are attractive dosage forms that avoid swallowing problems, ensure dosage accuracy and are easy to administer as they disintegrate in the oral cavity. This study aimed to develop ODTs containing losartan potassium (LP) for the treatment of arterial hypertension in children. The ODTs, produced by the cost-effective manufacturing process of direct compression, consisted of a mixture of diluent, superdisintegrant, glidant and lubricant. Five superdisintegrants (croscarmellose sodium, two grades of crospovidone, sodium starch glycolate and pregelatinized starch) were tested (at two concentrations), and combined with three diluents (mannitol, lactose and sorbitol). Thus, thirty formulations were evaluated based on disintegration time, hardness and friability. Two formulations, exhibiting the best results concerning disintegration time (< 30 s), hardness and friability (≤ 1.0%), were selected as the most promising ones for further evaluation. These ODTs presented favourable drug-excipient compatibility, tabletability and flow properties. The in vitro dissolution studies demonstrated 'very rapid' drug release. Preliminary stability studies highlighted the requirement of a protective packaging. All quality properties retained appropriate results after 12 months of storage in airtight containers. In conclusion, the ODTs were successfully developed and characterised, suggesting a potential means to accomplish a final prototype that enables an improvement in childhood arterial hypertension treatment.


Assuntos
Hipertensão , Losartan , Humanos , Criança , Análise Custo-Benefício , Solubilidade , Administração Oral , Composição de Medicamentos/métodos , Excipientes , Hipertensão/tratamento farmacológico , Comprimidos , Dureza
7.
AAPS PharmSciTech ; 25(4): 81, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600252

RESUMO

MALCORE®, a novel manufacturing technology for drug-containing particles (DCPs), relies on the melt granulation method to produce spherical particles with high drug content. The crucial aspect of particle preparation through MALCORE® involves utilizing polymers that dissolve in the melt component, thereby enhancing viscosity upon heating. However, only aminoalkyl methacrylate copolymer E (AMCE) has been previously utilized. Therefore, this study aims to discover other polymers and comprehend the essential properties these polymers need to possess. The results showed that polyvinylpyrrolidone (PVP) was soluble in the stearic acid (SA) melt component. FTIR examination revealed no interaction between SA and polymer. The phase diagram was used to analyze the state of the SA and polymer mixture during heating. It revealed the mixing ratio and temperature range where the mixture remained in a liquid state. The viscosity of the mixture depended on the quantity and molecular weight of the polymer dissolved in SA. Furthermore, the DCPs prepared using PVP via MALCORE® exhibited similar pharmaceutical properties to those prepared with AMCE. In conclusion, understanding the properties required for polymers in the melt granulation process of MALCORE® allows for the optimization of manufacturing conditions, such as temperature and mixing ratios, for efficient and consistent drug layering.


Assuntos
Polímeros , Povidona , Tecnologia Farmacêutica/métodos , Temperatura , Excipientes , Tecnologia , Metacrilatos , Composição de Medicamentos/métodos , Solubilidade
8.
AAPS PharmSciTech ; 25(5): 90, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649513

RESUMO

To formulate and optimize Ozenoxacin nano-emulsion using Quality by Design (QbD) concept by means of Box-Behnken Design (BBD) and converting it to a gel to form Ozenoxacin nano-emulgel followed by physico-chemical, in-vitro, ex-vivo and in-vivo evaluation. This study demonstrates the application of QbD methodology for the development and optimization of an effective topical nanoemulgel formulation for the treatment of Impetigo focusing on the selection of appropriate excipients, optimization of formulation and process variables, and characterization of critical quality attributes. BBD was used to study the effect of "% of oil, % of Smix and homogenization speed" on critical quality attributes "globule size and % entrapment efficiency" for the optimisation of Ozenoxacin Nano-emulsion. Ozenoxacin loaded nano-emulgel was characterized for "description, identification, pH, specific gravity, amplitude sweep, viscosity, assay, organic impurities, antimicrobial effectiveness testing, in-vitro release testing, ex-vivo permeation testing, skin retention and in-vivo anti-bacterial activity". In-vitro release and ex-vivo permeation, skin retention and in-vivo anti-bacterial activity were found to be significantly (p < 0.01) higher for the nano-emulgel formulation compared to the innovator formulation (OZANEX™). Antimicrobial effectiveness testing was performed and found that even at 70% label claim of benzoic acid is effective to inhibit microbial growth in the drug product. The systematic application of QbD principles facilitated the successful development and optimization of a Ozenoxacin Nano-Emulsion. Optimised Ozenoxacin Nano-Emulgel can be considered as an effective alternative and found to be stable at least for 6 months at 40 °C / 75% RH and 30 °C / 75% RH.


Assuntos
Antibacterianos , Emulsões , Impetigo , Quinolonas , Animais , Impetigo/tratamento farmacológico , Camundongos , Quinolonas/administração & dosagem , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química , Nanopartículas/química , Géis/química , Química Farmacêutica/métodos , Modelos Animais de Doenças , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Aminopiridinas/química , Aminopiridinas/farmacocinética , Excipientes/química , Pele/efeitos dos fármacos , Pele/metabolismo , Testes de Sensibilidade Microbiana/métodos , Absorção Cutânea/efeitos dos fármacos , Administração Tópica , Viscosidade , Composição de Medicamentos/métodos
9.
AAPS PharmSciTech ; 25(5): 88, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637407

RESUMO

Although biopharmaceuticals constitute around 10% of the drug landscape, eight of the ten top-selling products were biopharmaceuticals in 2023. This study did a comprehensive analysis of the FDA's Purple Book database. Firstly, our research uncovered market trends and provided insights into biologics distributions. According to the investigation, although biotechnology has advanced and legislative shifts have made the approval process faster, there are still challenges to overcome, such as molecular instability and formulation design. Moreover, our research comprehensively analyzed biological formulations, pointing out significant strategies regarding administration routes, dosage forms, product packaging, and excipients. In conjunction with biologics, the widespread integration of innovative delivery strategies will be implemented to confront the evolving challenges in healthcare and meet an expanding array of treatment needs.


Assuntos
Produtos Biológicos , Excipientes , Estados Unidos , Preparações Farmacêuticas , United States Food and Drug Administration , Aprovação de Drogas
10.
Carbohydr Polym ; 333: 121985, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494236

RESUMO

Sodium Sulfobutylether-ß-cyclodextrin (SBE-ß-CD) is a derivative of ß-cyclodextrin, characterized by its stereo structure, which closely resembles a truncated cone with a hydrophobic internal cavity. The solubility of insoluble substances within the hydrophobic cavity is significantly enhanced, reducing contact between the guest and the environment. Consequently, SBE-ß-CD is frequently employed as a co-solvent and stabilizer. As the research progresses, it has been observed that the inclusion of SBE-ß-CD is reversible and competitive. Besides, some inclusion complexes undergo distinct physicochemical property alterations compared to the guests. Additionally, certain guests exhibit varying inclusions with SBE-ß-CD at different concentrations. These features have contributed to the expanding applications. SBE-ß-CD finds widespread application in pharmaceutics as a protective agent and pKa regulator, in pharmaceutical analysis as a chiral substance separator, and in biomedical engineering for encapsulating dyes and modifying sensors. The article will elaborate in detail on the physicochemical properties of SBE-ß-CD, encapsulation principles, and factors influencing the formation of inclusion complexes. Furthermore, the review focuses on the application of SBE-ß-CD through encapsulation in pharmaceutics, pharmaceutical analysis, and biomedical engineering. Finally, the prospects and potential applications of SBE-ß-CD are discussed.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Excipientes , Solubilidade , Ciclodextrinas/química
11.
BMJ Case Rep ; 17(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442978

RESUMO

A primipara in her late 20s presented with abdominal pain and pain in the left flank 14 days after a ventouse delivery. She was treated with antibiotics, antiemetics and analgesics with the initial differential diagnosis of cystitis, pyelonephritis or nephrolithiasis. Despite the treatment, the patient experienced increased colic pain and nausea. An ultrasound showed an enlarged left kidney, suggesting pyelonephritis, and thereby, the antibiotic treatment was adjusted accordingly. Despite additional pain medication, pain relief could not be achieved. The diagnosis of ovarian venous thrombosis was considered, and an abdominal CT scan confirmed the diagnosis. The patient was treated with anticoagulant therapy. Hypercoagulability work-up revealed a heterozygous mutation of the Factor V Leiden. Our patient awaits a haematologic follow-up.


Assuntos
Pielonefrite , Trombose , Feminino , Humanos , Gravidez , Dor Abdominal/etiologia , Antibacterianos , Parto Obstétrico , Excipientes , Veias Renais/diagnóstico por imagem , Adulto
12.
Int J Pharm ; 654: 123989, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38467205

RESUMO

The study aimed to address the challenges related to insufficient dissolution and maintenance of supersaturation in binary solid dispersions. Lacidipine, categorized as a BCS class II drug, was employed as the model drug. A systematic screening of excipients was conducted to determine the most effective carriers for the formulations of the ternary solid dispersions, utilizing the solvent transfer method and equilibrium solubility measurements. Both binary and ternary solid dispersions were prepared via spray drying, and comprehensive physicochemical characterization confirmed the successful preparation of amorphous solid dispersions. In vitro dissolution tests, the ternary solid dispersion exhibited marked superiority over the binary solid dispersion in dissolution and maintenance of supersaturation. Furthermore, an exploration into the factors influencing the stability of ternary solid dispersions revealed their robust resistance under light-protected, room-temperature, and desiccated conditions. The formation of intermolecular hydrogen bonding within the molecules of the ternary solid dispersions significantly enhanced drug solubility and system stability. Strategic formulation optimization, coupled with judicious selection of suitable carrier types and ratios, may serve as a promising approach for designing supersaturated drug delivery systems.


Assuntos
Di-Hidropiridinas , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Excipientes , Solubilidade
13.
Drug Res (Stuttg) ; 74(4): 180-186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508227

RESUMO

Four natural sweeteners (sucrose, xylitol, fructose, and isomalt) were selected to examine the influence of their qualities and amounts on the characteristics of orodispersible films. Sodium carboxymethylcellulose (2% w/w) was utilized as the film-forming polymer and 1% w/w glycerol as a plasticizer. Films were produced through the solvent casting method, rendering them suitable for convenient application in community or hospital pharmacy settings. The physicochemical and optical properties of the films were analyzed, and Fourier-transform infrared analysis was carried out. All films exhibited acceptable disintegration time, uniformity of mass, thickness, and optical characteristics, with significant dependence (p<0.05) on both sweetener type and quantity. Disintegration time varied based on the employed method, as well as the characteristics and amount of sweetener. Additionally, all films maintained pH values within the oral cavity range, suggesting no potential irritancy upon administration. Fourier-transform infrared analysis confirmed the formation of the film and demonstrated compatibility between its components.


Assuntos
Química Farmacêutica , Edulcorantes , Química Farmacêutica/métodos , Solubilidade , Administração Oral , Solventes/química , Excipientes/química
14.
Mol Pharm ; 21(4): 1965-1976, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38516985

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) previously elucidated the interactions between excipients and proteins for liquid granulocyte colony stimulating factor (G-CSF) formulations, confirming predictions made using computational structure docking. More recently, solid-state HDX mass spectrometry (ssHDX-MS) was developed for proteins in the lyophilized state. Deuterium uptake in ssHDX-MS has been shown for various proteins, including monoclonal antibodies, to be highly correlated with storage stability, as measured by protein aggregation and chemical degradation. As G-CSF is known to lose activity through aggregation upon lyophilization, we applied the ssHDX-MS method with peptide mapping to four different lyophilized formulations of G-CSF to compare the impact of three excipients on local structure and exchange dynamics. HDX at 22 °C was confirmed to correlate well with the monomer content remaining after lyophilization and storage at -20 °C, with sucrose providing the greatest protection, and then phenylalanine, mannitol, and no excipient leading to progressively less protection. Storage at 45 °C led to little difference in final monomer content among the formulations, and so there was no discernible relationship with total deuterium uptake on ssHDX. Incubation at 45 °C may have led to a structural conformation and/or aggregation mechanism no longer probed by HDX at 22 °C. Such a conformational change was observed previously at 37 °C for liquid-formulated G-CSF using NMR. Peptide mapping revealed that tolerance to lyophilization and -20 °C storage was linked to increased stability in the small helix, loop AB, helix C, and loop CD. LC-MS HDX and NMR had previously linked loop AB and loop CD to the formation of a native-like state (N*) prior to aggregation in liquid formulations, suggesting a similar structural basis for G-CSF aggregation in the liquid and solid states.


Assuntos
Medição da Troca de Deutério , Fator Estimulador de Colônias de Granulócitos , Humanos , Deutério/química , Medição da Troca de Deutério/métodos , Excipientes/química , Fator Estimulador de Colônias de Granulócitos/química , Espectrometria de Massas/métodos , Proteínas/química
15.
Int J Pharm ; 655: 124014, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513817

RESUMO

Despite extensive research in spray drying of biopharmaceuticals, identifying the optimal formulation composition and process conditions to minimize the various stresses a biopharmaceutical undergoes during this drying process. The current study extends previous research on investigating how spray drying processing and solution composition can affect the stability of monoclonal antibodies (mAbs) in reconstituted solutions for subcutaneous injections. The decoupling process stresses on a model mAb (mAb-A) compared to the effect of coupled spray-drying stresses revealed that excipients and protein concentration had a more pronounced effect on stabilizing mAb-A against shear and thermal/dehydration stresses than spray drying operating conditions. These results prompted the continuation of the study, with the aim to investigate in greater depth the effect of mAb-A concentration in the formulation designated to spray-drying and then the effect of type and the concentration of individual excipients (sugars, amino acids and surfactants). The outcomes of this investigation suggest that a general increase in the concentration of excipients, particularly surfactants, correlates with a reduction in aggregation and turbidity observed in the reconstituted spray-dried mAb-A powders. These results, contribute to the identification of a suitable composition for a spray-dried mAb-A powder that ensures robust stability of the protein in reconstituted solutions intended for subcutaneous injection. This valuable insight has important implications for advancing the development of pharmaceutical formulations with enhanced stability and efficacy.


Assuntos
Química Farmacêutica , Excipientes , Excipientes/química , Química Farmacêutica/métodos , Secagem por Atomização , Anticorpos Monoclonais/química , Injeções Subcutâneas , Tensoativos , Pós/química , Liofilização
16.
Int J Pharm ; 655: 124055, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554741

RESUMO

Administration of monoclonal antibodies (mAbs) is currently focused on subcutaneous injection associated with increased patient adherence and reduced treatment cost, leading to sustainable healthcare. The main bottleneck is low volume that can be injected, requiring highly concentrated mAb solutions. The latter results in increased solution viscosity with pronounced mAb aggregation propensity because of intensive protein-protein interactions. Small molecule excipients have been proposed to restrict the protein-protein interactions, contributing to reduced viscosity. The aim of the study was to discover novel compounds that reduce the viscosity of highly concentrated mAb solution. First, the chemical space of proline analogs was explored and 35 compounds were determined. Viscosity measurements revealed that 18 proline analogs reduced the mAb solution viscosity similar to or more than proline. The compounds forming both electrostatic and hydrophobic interactions with mAb reduced the viscosity of the formulation more efficiently without detrimentally effecting mAb physical stability. A correlation between the level of interaction and viscosity-reducing effect was confirmed with molecular dynamic simulations. Structure rigidity of the compounds and aromaticity contributed to their viscosity-reducing effect, dependent on molecule size. The study results highlight the novel proline analogs as an effective approach in viscosity reduction in development of biopharmaceuticals for subcutaneous administration.


Assuntos
Anticorpos Monoclonais , Prolina , Humanos , Anticorpos Monoclonais/química , Viscosidade , Simulação de Dinâmica Molecular , Excipientes/química , Soluções
17.
Int J Pharm ; 655: 124070, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554740

RESUMO

The importance of ink rheology to the outcome of 3D printing is well recognized. However, rheological properties of printing inks containing drug nanocrystals have not been widely investigated. Therefore, the objective of this study was to establish a correlation between the composition of nanocrystal printing ink, the ink rheology, and the entire printing process. Indomethacin was used as a model poorly soluble drug to produce nanosuspensions with improved solubility properties through particle size reduction. The nanosuspensions were further developed into semisolid extrusion 3D printing inks with varying nanocrystal and poloxamer 407 concentrations. Nanocrystals were found to affect the rheological properties of the printing inks both by being less self-supporting and having higher yielding resistances. During printing, nozzle blockages occurred. Nevertheless, all inks were found to be printable. Finally, the rheological properties of the inks were successfully correlated with various printing and product properties. Overall, these experiments shed new light on the rheological properties of printing inks containing nanocrystals.


Assuntos
Nanopartículas , Poloxâmero , Géis , Excipientes/química , Impressão Tridimensional , Reologia , Tinta
18.
Int J Pharm ; 655: 123966, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452834

RESUMO

The potential of fine excipient materials to improve the aerodynamic performance of carrier-based dry powder inhalation (DPI) formulations is well acknowledged but not fully elucidated. To improve the understanding of this potential, we studied two fine excipient materials: micronized lactose particles and silica microspheres. Inhalation formulations, each composed of a coarse lactose carrier, one of the two fine excipient materials (0.0-15.0 % w/w), and a spray-dried drug (fluticasone propionate) material (1.5 % w/w) were prepared. The physical structure, the flow behavior, the aerosolization behavior, and the aerodynamic performance of the formulations were studied. The two fine excipient materials similarly occupied carrier surface macropores. However, only the micronized lactose particles formed agglomerates and appeared to increase the tensile strength of the formulations. At 2.5 % w/w, the two fine excipient materials similarly improved drug dispersibility, whereas at higher concentrations, the micronized lactose material was more beneficial than the silica microspheres. The findings suggest that fine excipient materials improve drug dispersibility from carrier-based DPI formulations at low concentrations by filling carrier surface macropores and at high concentrations by forming agglomerates and/or enforcing fluidization. The study emphasizes critical attributes of fine excipient materials in carrier-based DPI formulations.


Assuntos
Excipientes , Lactose , Excipientes/química , Pós/química , Lactose/química , Portadores de Fármacos/química , Inaladores de Pó Seco , Administração por Inalação , Propriedades de Superfície , Dióxido de Silício , Tamanho da Partícula , Aerossóis/química
19.
Chemosphere ; 354: 141653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485000

RESUMO

Contemporary advances in material development associated with membrane gas separation refer to the cost-effective fabrication of high-performance, defect-free mixed matrix membranes (MMMs). For clean energy production, natural gas purification, and CO2 capture from flue gas systems, constituting a functional integration of polymer matrix and inorganic filler materials find huge applications. The broad domain of research and development of MMMs focused on the selection of appropriate materials, inexpensive membrane fabrication, and comparative study with other gas separation membranes for real-world applications. This study addressed a comprehensive review of the advanced MMMs wrapping various facets of membrane material selection; polymer and filler particle morphology and compatibility between the phases and the relevance of several fillers in the assembly of MMMs are analyzed. Further, the research on binary MMMs, their problems, and solutions to overcome these challenges have also been discussed. Finally, the future directions and scope of work on quaternary MMM are scrutinized in the article.


Assuntos
Dióxido de Carbono , Excipientes , Membranas , Gás Natural , Polímeros
20.
Environ Sci Pollut Res Int ; 31(16): 24360-24374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443536

RESUMO

Domestic wastewater source-separated treatment has attracted wide attention due to the efficiency improvement of sewage treatment systems, energy saving, resource reuse, and the construction and operation cost saving of pipeline networks. Nonetheless, the excess source-separated urine still demands further harmless treatment. Sequencing batch biofilm reactor (SBBR), a new type of composite biofilm reactor developed by filling different fillers into the sequential batch reactor (SBR) reactor, has higher pollutant removal performance and simpler operation and maintenance. However, the phosphorus removal ability of the SBBR filling with conventional fillers is still limited and needs further improvement. In this study, we developed two new fillers, the self-fabricated filler A and B (SFA/SFB), and compared their source-separated urine treatment performance. Long-term treatment experimental results demonstrated that the SBBR systems with different fillers had good removal performance on the COD and TN in the influent, and the removal rate increased with the increasing HRT. However, only the SBBR system with the SFA showed excellent PO43--P and TP removal performance, with the removal rates being 83.7 ± 11.9% and 77.3 ± 13.7% when the HRT was 1 d. Microbial community analysis results indicated that no special bacteria with strong phosphorus removal ability were present on the surface of the SFA. Adsorption experimental results suggested that the SFA had better adsorption performance for phosphorus than the SFB, but it could not always have stronger phosphorus adsorption and removal performance during long-term operation due to the adsorption saturation. Through a series of characterizations such as SEM, XRD, and BET, it was found that the SFA had a looser structure due to the use of different binder and production processes, and the magnesium in the SFA gradually released and reacted with PO43- and NH4+ in the source-separated urine to form dittmarite and struvite, thus achieving efficient phosphorus removal. This study provides a feasible manner for the efficient treatment of source-separated urine using the SBBR system with self-fabricated fillers.


Assuntos
Magnésio , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Fósforo , Reatores Biológicos , Nitrogênio , Excipientes , Biofilmes , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...